Towards prediction of rapid intensification in tropical cyclones with recurrent neural networks

نویسنده

  • Rohitash Chandra
چکیده

The problem where a tropical cyclone intensifies dramatically within a short period of time is known as rapid intensification. This has been one of the major challenges for tropical weather forecasting. Recurrent neural networks have been promising for time series problems which makes them appropriate for rapid intensification. In this paper, recurrent neural networks are used to predict rapid intensification cases of tropical cyclones from the South Pacific and South Indian Ocean regions. A class imbalanced problem is encountered which makes it very challenging to achieve promising performance. A simple strategy was proposed to include more positive cases for detection where the false positive rate was slightly improved. The limitations of building an efficient system remains due to the challenges of addressing the class imbalance problem encountered for rapid intensification prediction. This motivates further research in using innovative machine learning methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

Multi-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks

Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...

متن کامل

Stacked transfer learning for tropical cyclone intensity prediction

Tropical cyclone wind-intensity prediction is a challenging task considering drastic changes climate patterns over the last few decades. In order to develop robust prediction models, one needs to consider different characteristics of cyclones in terms of spatial and temporal characteristics. Transfer learning incorporates knowledge from a related source dataset to compliment a target datasets e...

متن کامل

The Influence of Tropical Cyclone Size on Its Intensification

This study investigates tropical cyclones of the past two decades (1990–2010) and the connection, if any, between their size and their ability to subsequently undergo rapid intensification (RI). Three different parameters are chosen to define the size of a tropical cyclone: radius of maximum wind (RMW), the average 34-knot (kt; 1 kt5 0.51m s) radius (AR34), and the radius of the outermost close...

متن کامل

The air-sea interface and surface stress under tropical cyclones

Tropical cyclone track prediction is steadily improving, while storm intensity prediction has seen little progress in the last quarter century. Important physics are not yet well understood and implemented in tropical cyclone forecast models. Missing and unresolved physics, especially at the air-sea interface, are among the factors limiting storm predictions. In a laboratory experiment and coor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1701.04518  شماره 

صفحات  -

تاریخ انتشار 2017